
Background

Microsoft's Semantic Kernel is a software
development kit (SDK) designed for C# and
Python developers to integrate AI large language
models (LLM) such as Chat-GPT into their
existing applications. The Semantic Kernel
leverages AI services like OpenAI, Azure OpenAI,
and Hugging Face via their respective APIs. This
SDK simplifies the utilization of AI technology for
developers by enabling the orchestration of AI
plugins.

The Semantic Kernel offers a suite of connectors
that facilitate the incorporation of memories and
models into AI-powered applications. Memories
provide the LLM with context and specific
knowledge, enhancing its ability to answer
questions and engage in meaningful conversations.
A model refers to a specific instance of an LLM,
such as GPT-3. Additionally, the Semantic Kernel
streamlines the addition of skills to applications
through AI plugins, which consist of prompts and

native functions that respond to triggers and
execute actions. Furthermore, planners can be used
to allow the AI to autonomously select appropriate
skills when fulfilling a user's request.

System Overview

To provide a comprehensive understanding of the
project's structure and technology stack, a high-
level system diagram is presented. Semantic
Kernel is available in two versions: C# and Python.
This case study focuses on the Python version,

Figure 1: System Overview

Integrating AI Services into Semantic Kernel: A Case Study on Enhancing
Functionality with Google PaLM and Large Language Models

Alisha Maddy

which is managed as a Python package using
Poetry.

Within the kernel, direct interactions with the AI
service APIs and databases are abstracted from the
user. Upon installing Semantic Kernel, various
methods and objects can be imported into the code,
categorized under skills/plugins, planners, and
semantic memory. After instantiating an AI service
class, the capabilities of AI can be harnessed
through Semantic Kernel orchestration, with data
for semantic memory being effortlessly stored in
databases. (Figure 1)

A Good First Issue

To become acquainted with the Semantic Kernel
project, the team selected a 'good first issue' to
address collaboratively. This issue involved
modifying the API calls to include a parameter
known as logit-bias, which allows developers to
influence the probability of certain words
appearing in responses from OpenAI models.
Logit-bias is a dictionary that maps words to
integer values, with -100 completely banning a
word and 100 exclusively favoring a word, with
varying degrees in between.

Since logit-bias is already implemented by
OpenAI, the primary task was to create an example
file demonstrating its functionality. Due to

unfamiliarity with the Semantic Kernel's functions,
the exploration of the codebase was necessary
whenever errors were encountered. This
exploration provided valuable insights into the
project's structure. The team's pull request (PR)
was successfully merged, marking a significant
milestone in their engagement with the project.
(Figure 2)

Opening Our Own Issue

The team's mentor encouraged them to challenge
themselves by working on issues individually. He
suggested that each member come up with an idea
for a new connector to add to the project. This
guidance and encouragement proved invaluable, as
it prompted taking on a more ambitious task within
the project. Initially unfamiliar with what a

Figure 2: The user sends a message to the chat bot along with a dictionary of words to filter out or favor.

connector was, this marked the beginning of a
more in-depth exploration.

Finding a Starting Point

The exploration of the codebase commenced to
locate where the connectors were implemented. By
examining the existing implementations, it was
determined that a connector is a class designed to
manage interactions with APIs and databases. With
this foundational understanding, the search for
gaps in the project began. It was observed that the
project had a limited number of connectors for
large language models, specifically only three: one
for OpenAI, one for Hugging Face, and another for
Azure OpenAI, which itself does not have
proprietary LLMs and merely serves as an API
service for OpenAI.

Subsequently, an investigation was undertaken to
identify additional AI services that could be
integrated. This task was challenging due to the
prevalent waitlists for API keys. After joining the
waitlist for a Google PaLM API key, fortune
smiled, and an API key was received the following
day. The next step involved thoroughly studying
the PaLM documentation to ensure compatibility
with the project. Confident in its feasibility, an
issue was opened to add a Google PaLM connector
to the Semantic Kernel project. (Figure 3)

Integration of PaLM's Capabilities

To integrate Google PaLM's text completion, chat
completion, and text embedding functionalities
into the Semantic Kernel, a structured approach
was adopted. The text completion feature leverages
the text-bison-001 model, which generates a
completion based on a provided text prompt. This
model can handle various language tasks,
including translation, text summarization, and text
generation. The initial focus was on integrating
text completion.

Implementing a Solution

A new class, GooglePalmTextCompletion, was
developed to handle the text completion
functionality. This class manages user requests,
communicates with the API, and returns responses
to users. The similarity between Google’s
generative AI library functions for text completion
and OpenAI’s functions facilitated a consistent
integration process. Significant effort was
dedicated to understanding the codebase
comprehensively, examining all relevant
directories and files in detail.

Figure 3: The Semantic Kernel and its connections to LLMs and databases, including the new PaLM connector.

To demonstrate the usage of the new class, an
example file was created, serving as a tool for
manual debugging. Following successful manual
testing, six new integration tests were implemented
to ensure compatibility with core kernel functions.
Additionally, three unit tests were developed to
verify the successful initialization of the class and
the accuracy of API calls.

Testing and Simulating API Calls

While integration and unit testing did not reveal
any bugs, testing the API calls posed a challenge
due to the need to avoid consuming actual
resources. Therefore, asynchronous API calls were
simulated using Python’s MagicMock patching. This
approach involved several steps:

1. Creating an Asynchronous Future
Object: An asyncio.Future object was
created, with its result set to the string
“Example” to simulate a successful API
response.

2. Creating a MagicMock Response: A
MagicMock object was generated to
represent the API call response.

3. Assigning the Future Result: The
MagicMock response’s result attribute was
set to the asyncio.Future object,
simulating an asynchronous response.

4. Mocking the
GooglePalmTextCompletion Class:
Another MagicMock object was created to
represent the GooglePalmTextCompletion
class, with its return value set to the mock
response.

5. Patching the Class: The actual class was
temporarily replaced with the MagicMock
object using patching.

6. Conducting the Test: Functions in the
patched class were called, returning the
mock response object with the future
result “Example”.

Following the successful completion of these steps,
a pull request was submitted. Subsequently,
attention shifted to integrating chat completion and
text embedding capabilities, with a new issue
being opened to address these features.

Chat With Google’s Large Language Model

The chat completion functionality utilizes the chat-
bison-001 model, which is more akin to the Chat-
GPT models that OpenAI is renowned for. This
model engages users in a conversational manner,
maintaining the context of the conversation
history. Integrating Google PaLM's chat
completion capabilities into the Semantic Kernel
posed greater challenges compared to text
completion. Significant differences exist between
the structures of chat functions in Google's
generative AI package and the OpenAI package,
necessitating subjective decisions to ensure a
consistent user experience across different AI
services.

Challenges and Solutions

OpenAI employs "system messages" to provide the
chatbot with conversational context and to prime it
with specific behaviors or knowledge. These
messages are part of a list containing the entire
chat history, which is passed as a parameter in
each API call for chatting. Users can add system
messages to give the bot skills or context.
Conversely, PaLM uses a parameter called context,
which is a string separate from the message
parameter. To maintain a similar user experience,
the conversion of system messages to the context
parameter was abstracted away from the user.

Additionally, OpenAI allows constructing a
conversation history that never occurred and
passing it to the API call, enabling Chat-GPT to
use it for context. PaLM, however, does not
support passing chat history to its functions; only
the current message can be given, with a non-
mutable chat history stored in the response object.
To accommodate this, the
GooglePalmChatCompletion class was designed to
concatenate the entire chat history into a string and
pass it as the context parameter.

A comprehensive understanding of Semantic
Kernel's offerings was necessary to deliver this
feature, ensuring seamless integration with the
project's workflow. Three example files were
created to demonstrate the usage of the new classes
and facilitate manual debugging: one for normal
chatting, another for chatting with skills and
system messages, and a third for chatting with
memory, leading to the text embedding feature.

Text Embedding

Text embedding is a capability provided by PaLM
and other AI services, utilized by Semantic Kernel
for semantic memory. It processes words and
phrases into a list of integers representing their
semantic meaning, which can be used to measure
text relatedness. Users can embed information they
want to provide to the chatbot, store the
embeddings in a database, and query the database
to build prompts. For instance, a question or any
text string can be embedded to find a related string
in the database, enabling the chatbot to provide
context-specific responses based on stored
embeddings.

A class was created to handle sending and
receiving data from PaLM’s API for text
embedding. An example was developed to build a
prompt filled with embeddings stored in memory,
which is then sent to the bot for context. This
allows the bot to access personal details about a
hypothetical user that it otherwise would not know.
Additional integration and unit tests were
implemented, similar to those for text completion.
The final pull request for the Google PaLM
connector was submitted after thorough testing of
chat completion and text embedding.

Chat with CSV Files and Pandas Dataframes

In addition to completing a major feature,
collaboration with teammate Sneha led to the
development of a feature allowing users to query
structured data sources with natural language. This
task, unprecedented before the advent of large
language models, is challenging due to the data
size limitations. For example, Chat-GPT has a text
length limit of around 500 words per message,
making it impractical to query a dataset with
thousands of entries directly. Implementing this
feature involved innovative techniques to enable
efficient querying of large datasets.

Figure 4: An example of a user asking the LLM
about their data using a CSV file and Pandas
dataframe source.

Addressing the Issue of Model Training with
Structured Data

Upon discovering an issue requesting the ability to
‘train’ models using a structured data source, an in-
depth investigation into fine-tuning OpenAI
models was initiated. However, after reviewing
OpenAI’s documentation and engaging in
discussions on the Semantic Kernel (SK) Discord,
it became evident that fine-tuning was not
recommended for most use cases. Clarifying the
issue’s requirements necessitated considerable
brainstorming. References to Langchain’s
documentation clarified the desired end result,
though the process remained ambiguous. Despite
the complexity of Langchain’s codebase, a critical
insight was gained from its source code: the
existence of a tool for executing LLM-generated
Python code. Although the structural differences
between Langchain and Semantic Kernel
prevented direct implementation parallels, this
conceptual understanding was invaluable.

Implementing a Solution

The solution began with the development of two
new skills: data_skill and code_skill. The
code_skill class generates Python code by
providing instructions to the LLM, parses the code
from the response, and executes it. Although
code_skill can operate independently, the
data_skill class relies on it.

The primary focus was on the data_skill class,
which manages data retrieval and user requests,
returning the processed answer. This class converts
all data into pandas dataframes and constructs a
prompt containing the first three rows of each
dataframe, along with instructions for generating
Python code and the user’s request. The prompt is
then sent to the code_skill, where the LLM-
generated code is executed on the user's data.
Finally, the result is formatted in a natural
language response by the LLM and returned to the
user.

Efficiency Considerations

Executing code locally on the user’s system, rather
than sending all data to the LLM, significantly
enhances efficiency. Each API request consumes
tokens, which incur costs and are subject to limits
on the number of tokens that can be used per
request. This local execution approach mitigates
these limitations, optimizing both cost and
performance.

Consider the following datasets:

data1 = {
 "Name": ["Alice", "Bob", "Charlie",
"David", "Eve"],

 "Age": [25, 32, 28, 22, 29],

 "City": ["New York", "Los Angeles",
"Chicago", "Houston", "Miami"],

 "Salary": [60000, 75000, 52000,
48000, 67000],
 }

 data2 = {
 "Name": ["Amanda", "Brian",
"Catherine", "Daniel", "Emily", "Francis"],

 "Age": [27, 35, 31, 24, 30, 33],

 "City": ["San Francisco", "Seattle",
"Boston", "Austin", "Denver", "Savannah"],

 "Salary": [62000, 80000, 55000,
50000, 67000, 70000],
 }
 df1 = pd.DataFrame(data1)
 df2 = pd.DataFrame(data2)

To convert them to dataframes and then send them
to the data_skill, a user could ask questions such
as:

• User: How old is Bob and what city does
Francis live in?

• Output: Bob is 32 years old and Francis
lives in Savannah.

• User: Which group has a higher average
salary and what is the difference?

• Output: The group with the higher average
salary is df2. The difference in average
salary between the two groups is $3600.

• User: Explain the correlation between age
and income with two decimal places.

• Output: The correlation between age and
income is .83, which indicates a strong
positive relationship. This means that as
age increases, income tends to increase as
well.

The possibilities are endless. I prototyped
functions for being able to transform data and
generate plots as well, which we will continue to
work on. I submitted a draft PR to get feedback on
what we’ve done so far.

The Endless Possibilities

The integration of these new capabilities opens up
numerous possibilities. Prototyping functions for
data transformation and plot generation has been
initiated, paving the way for further enhancements.
The draft pull request (PR) was submitted to solicit
feedback on the progress made thus far.

Prototyping Advanced Functions

In addition to basic data handling and query
execution, functions for data transformation and
visualization were prototyped. These advanced
features enable users to manipulate data and
generate various plots, significantly expanding the
range of analytical tasks that can be performed.
The ongoing development of these functions aims
to provide robust and versatile tools for data
analysis within the Semantic Kernel framework.

Seeking Feedback

The submission of a draft PR marks an important
step in the development process, inviting feedback
from the project maintainers and the broader
community. This feedback will be instrumental in
refining the implementation and ensuring it aligns
with the project's goals and standards. The
collaborative nature of this process underscores the
commitment to delivering a high-quality, user-
friendly solution.

Future Work

https://github.com/microsoft/semantic-kernel/pull/2385

The work on transforming data and generating
plots is set to continue, with the potential to
introduce even more sophisticated data analysis
capabilities. The integration of these features will

not only enhance the functionality of the Semantic
Kernel but also empower users to perform complex
data-driven tasks efficiently.

