
Background 

Microsoft's Semantic Kernel is a software 
development kit (SDK) designed for C# and 
Python developers to integrate AI large language 
models (LLM) such as Chat-GPT into their 
existing applications. The Semantic Kernel 
leverages AI services like OpenAI, Azure OpenAI, 
and Hugging Face via their respective APIs. This 
SDK simplifies the utilization of AI technology for 
developers by enabling the orchestration of AI 
plugins. 

The Semantic Kernel offers a suite of connectors 
that facilitate the incorporation of memories and 
models into AI-powered applications. Memories 
provide the LLM with context and specific 
knowledge, enhancing its ability to answer 
questions and engage in meaningful conversations. 
A model refers to a specific instance of an LLM, 
such as GPT-3. Additionally, the Semantic Kernel 
streamlines the addition of skills to applications 
through AI plugins, which consist of prompts and 

native functions that respond to triggers and 
execute actions. Furthermore, planners can be used 
to allow the AI to autonomously select appropriate 
skills when fulfilling a user's request. 

System Overview 

To provide a comprehensive understanding of the 
project's structure and technology stack, a high-
level system diagram is presented. Semantic 
Kernel is available in two versions: C# and Python. 
This case study focuses on the Python version, 

Figure 1: System Overview 
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which is managed as a Python package using 
Poetry. 

Within the kernel, direct interactions with the AI 
service APIs and databases are abstracted from the 
user. Upon installing Semantic Kernel, various 
methods and objects can be imported into the code, 
categorized under skills/plugins, planners, and 
semantic memory. After instantiating an AI service 
class, the capabilities of AI can be harnessed 
through Semantic Kernel orchestration, with data 
for semantic memory being effortlessly stored in 
databases. (Figure 1) 

 

A Good First Issue 

To become acquainted with the Semantic Kernel 
project, the team selected a 'good first issue' to 
address collaboratively. This issue involved 
modifying the API calls to include a parameter 
known as logit-bias, which allows developers to 
influence the probability of certain words 
appearing in responses from OpenAI models. 
Logit-bias is a dictionary that maps words to 
integer values, with -100 completely banning a 
word and 100 exclusively favoring a word, with 
varying degrees in between. 

Since logit-bias is already implemented by 
OpenAI, the primary task was to create an example 
file demonstrating its functionality. Due to 

unfamiliarity with the Semantic Kernel's functions, 
the exploration of the codebase was necessary 
whenever errors were encountered. This 
exploration provided valuable insights into the 
project's structure. The team's pull request (PR) 
was successfully merged, marking a significant 
milestone in their engagement with the project. 
(Figure 2) 

 

Opening Our Own Issue 

The team's mentor encouraged them to challenge 
themselves by working on issues individually. He 
suggested that each member come up with an idea 
for a new connector to add to the project. This 
guidance and encouragement proved invaluable, as 
it prompted taking on a more ambitious task within 
the project. Initially unfamiliar with what a 

Figure 2: The user sends a message to the chat bot along with a dictionary of words to filter out or favor. 



connector was, this marked the beginning of a 
more in-depth exploration. 

Finding a Starting Point 

The exploration of the codebase commenced to 
locate where the connectors were implemented. By 
examining the existing implementations, it was 
determined that a connector is a class designed to 
manage interactions with APIs and databases. With 
this foundational understanding, the search for 
gaps in the project began. It was observed that the 
project had a limited number of connectors for 
large language models, specifically only three: one 
for OpenAI, one for Hugging Face, and another for 
Azure OpenAI, which itself does not have 
proprietary LLMs and merely serves as an API 
service for OpenAI. 

Subsequently, an investigation was undertaken to 
identify additional AI services that could be 
integrated. This task was challenging due to the 
prevalent waitlists for API keys. After joining the 
waitlist for a Google PaLM API key, fortune 
smiled, and an API key was received the following 
day. The next step involved thoroughly studying 
the PaLM documentation to ensure compatibility 
with the project. Confident in its feasibility, an 
issue was opened to add a Google PaLM connector 
to the Semantic Kernel project. (Figure 3) 

 

Integration of PaLM's Capabilities 

To integrate Google PaLM's text completion, chat 
completion, and text embedding functionalities 
into the Semantic Kernel, a structured approach 
was adopted. The text completion feature leverages 
the text-bison-001 model, which generates a 
completion based on a provided text prompt. This 
model can handle various language tasks, 
including translation, text summarization, and text 
generation. The initial focus was on integrating 
text completion. 

Implementing a Solution 

A new class, GooglePalmTextCompletion, was 
developed to handle the text completion 
functionality. This class manages user requests, 
communicates with the API, and returns responses 
to users. The similarity between Google’s 
generative AI library functions for text completion 
and OpenAI’s functions facilitated a consistent 
integration process. Significant effort was 
dedicated to understanding the codebase 
comprehensively, examining all relevant 
directories and files in detail. 

Figure 3: The Semantic Kernel and its connections to LLMs and databases, including the new PaLM connector. 



To demonstrate the usage of the new class, an 
example file was created, serving as a tool for 
manual debugging. Following successful manual 
testing, six new integration tests were implemented 
to ensure compatibility with core kernel functions. 
Additionally, three unit tests were developed to 
verify the successful initialization of the class and 
the accuracy of API calls. 

Testing and Simulating API Calls 

While integration and unit testing did not reveal 
any bugs, testing the API calls posed a challenge 
due to the need to avoid consuming actual 
resources. Therefore, asynchronous API calls were 
simulated using Python’s MagicMock patching. This 
approach involved several steps: 

1. Creating an Asynchronous Future 
Object: An asyncio.Future object was 
created, with its result set to the string 
“Example” to simulate a successful API 
response. 

2. Creating a MagicMock Response: A 
MagicMock object was generated to 
represent the API call response. 

3. Assigning the Future Result: The 
MagicMock response’s result attribute was 
set to the asyncio.Future object, 
simulating an asynchronous response. 

4. Mocking the 
GooglePalmTextCompletion Class: 
Another MagicMock object was created to 
represent the GooglePalmTextCompletion 
class, with its return value set to the mock 
response. 

5. Patching the Class: The actual class was 
temporarily replaced with the MagicMock 
object using patching. 

6. Conducting the Test: Functions in the 
patched class were called, returning the 
mock response object with the future 
result “Example”. 

Following the successful completion of these steps, 
a pull request was submitted. Subsequently, 
attention shifted to integrating chat completion and 
text embedding capabilities, with a new issue 
being opened to address these features. 

Chat With Google’s Large Language Model 

The chat completion functionality utilizes the chat-
bison-001 model, which is more akin to the Chat-
GPT models that OpenAI is renowned for. This 
model engages users in a conversational manner, 
maintaining the context of the conversation 
history. Integrating Google PaLM's chat 
completion capabilities into the Semantic Kernel 
posed greater challenges compared to text 
completion. Significant differences exist between 
the structures of chat functions in Google's 
generative AI package and the OpenAI package, 
necessitating subjective decisions to ensure a 
consistent user experience across different AI 
services. 

Challenges and Solutions 

OpenAI employs "system messages" to provide the 
chatbot with conversational context and to prime it 
with specific behaviors or knowledge. These 
messages are part of a list containing the entire 
chat history, which is passed as a parameter in 
each API call for chatting. Users can add system 
messages to give the bot skills or context. 
Conversely, PaLM uses a parameter called context, 
which is a string separate from the message 
parameter. To maintain a similar user experience, 
the conversion of system messages to the context 
parameter was abstracted away from the user. 

Additionally, OpenAI allows constructing a 
conversation history that never occurred and 
passing it to the API call, enabling Chat-GPT to 
use it for context. PaLM, however, does not 
support passing chat history to its functions; only 
the current message can be given, with a non-
mutable chat history stored in the response object. 
To accommodate this, the 
GooglePalmChatCompletion class was designed to 
concatenate the entire chat history into a string and 
pass it as the context parameter. 

A comprehensive understanding of Semantic 
Kernel's offerings was necessary to deliver this 
feature, ensuring seamless integration with the 
project's workflow. Three example files were 
created to demonstrate the usage of the new classes 
and facilitate manual debugging: one for normal 
chatting, another for chatting with skills and 
system messages, and a third for chatting with 
memory, leading to the text embedding feature. 



Text Embedding 

Text embedding is a capability provided by PaLM 
and other AI services, utilized by Semantic Kernel 
for semantic memory. It processes words and 
phrases into a list of integers representing their 
semantic meaning, which can be used to measure 
text relatedness. Users can embed information they 
want to provide to the chatbot, store the 
embeddings in a database, and query the database 
to build prompts. For instance, a question or any 
text string can be embedded to find a related string 
in the database, enabling the chatbot to provide 
context-specific responses based on stored 
embeddings. 

A class was created to handle sending and 
receiving data from PaLM’s API for text 
embedding. An example was developed to build a 
prompt filled with embeddings stored in memory, 
which is then sent to the bot for context. This 
allows the bot to access personal details about a 
hypothetical user that it otherwise would not know. 
Additional integration and unit tests were 
implemented, similar to those for text completion. 
The final pull request for the Google PaLM 
connector was submitted after thorough testing of 
chat completion and text embedding. 

Chat with CSV Files and Pandas Dataframes 

In addition to completing a major feature, 
collaboration with teammate Sneha led to the 
development of a feature allowing users to query 
structured data sources with natural language. This 
task, unprecedented before the advent of large 
language models, is challenging due to the data 
size limitations. For example, Chat-GPT has a text 
length limit of around 500 words per message, 
making it impractical to query a dataset with 
thousands of entries directly. Implementing this 
feature involved innovative techniques to enable 
efficient querying of large datasets. 

 

Figure 4: An example of a user asking the LLM 
about their data using a CSV file and Pandas 
dataframe source.  

 

Addressing the Issue of Model Training with 
Structured Data 

Upon discovering an issue requesting the ability to 
‘train’ models using a structured data source, an in-
depth investigation into fine-tuning OpenAI 
models was initiated. However, after reviewing 
OpenAI’s documentation and engaging in 
discussions on the Semantic Kernel (SK) Discord, 
it became evident that fine-tuning was not 
recommended for most use cases. Clarifying the 
issue’s requirements necessitated considerable 
brainstorming. References to Langchain’s 
documentation clarified the desired end result, 
though the process remained ambiguous. Despite 
the complexity of Langchain’s codebase, a critical 
insight was gained from its source code: the 
existence of a tool for executing LLM-generated 
Python code. Although the structural differences 
between Langchain and Semantic Kernel 
prevented direct implementation parallels, this 
conceptual understanding was invaluable. 

Implementing a Solution 

The solution began with the development of two 
new skills: data_skill and code_skill. The 
code_skill class generates Python code by 
providing instructions to the LLM, parses the code 
from the response, and executes it. Although 
code_skill can operate independently, the 
data_skill class relies on it. 

The primary focus was on the data_skill class, 
which manages data retrieval and user requests, 
returning the processed answer. This class converts 
all data into pandas dataframes and constructs a 
prompt containing the first three rows of each 
dataframe, along with instructions for generating 
Python code and the user’s request. The prompt is 
then sent to the code_skill, where the LLM-
generated code is executed on the user's data. 
Finally, the result is formatted in a natural 
language response by the LLM and returned to the 
user. 



Efficiency Considerations 

Executing code locally on the user’s system, rather 
than sending all data to the LLM, significantly 
enhances efficiency. Each API request consumes 
tokens, which incur costs and are subject to limits 
on the number of tokens that can be used per 
request. This local execution approach mitigates 
these limitations, optimizing both cost and 
performance. 

Consider the following datasets: 

data1 = { 
        "Name": ["Alice", "Bob", "Charlie", 
"David", "Eve"], 
 
        "Age": [25, 32, 28, 22, 29], 
 
        "City": ["New York", "Los Angeles", 
"Chicago", "Houston", "Miami"], 
 
        "Salary": [60000, 75000, 52000, 
48000, 67000], 
    } 
 
    data2 = { 
        "Name": ["Amanda", "Brian", 
"Catherine", "Daniel", "Emily", "Francis"], 
 
        "Age": [27, 35, 31, 24, 30, 33], 
 
        "City": ["San Francisco", "Seattle", 
"Boston", "Austin", "Denver", "Savannah"], 
 
        "Salary": [62000, 80000, 55000, 
50000, 67000, 70000], 
    } 
    df1 = pd.DataFrame(data1) 
    df2 = pd.DataFrame(data2) 

To convert them to dataframes and then send them 
to the data_skill, a user could ask questions such 
as:  

• User: How old is Bob and what city does 
Francis live in? 

• Output: Bob is 32 years old and Francis 
lives in Savannah. 

 

• User: Which group has a higher average 
salary and what is the difference? 

• Output: The group with the higher average 
salary is df2. The difference in average 
salary between the two groups is $3600. 

 

• User: Explain the correlation between age 
and income with two decimal places. 

• Output: The correlation between age and 
income is .83, which indicates a strong 
positive relationship. This means that as 
age increases, income tends to increase as 
well. 

The possibilities are endless. I prototyped 
functions for being able to transform data and 
generate plots as well, which we will continue to 
work on. I submitted a draft PR to get feedback on 
what we’ve done so far.  

The Endless Possibilities 

The integration of these new capabilities opens up 
numerous possibilities. Prototyping functions for 
data transformation and plot generation has been 
initiated, paving the way for further enhancements. 
The draft pull request (PR) was submitted to solicit 
feedback on the progress made thus far. 

Prototyping Advanced Functions 

In addition to basic data handling and query 
execution, functions for data transformation and 
visualization were prototyped. These advanced 
features enable users to manipulate data and 
generate various plots, significantly expanding the 
range of analytical tasks that can be performed. 
The ongoing development of these functions aims 
to provide robust and versatile tools for data 
analysis within the Semantic Kernel framework. 

Seeking Feedback 

The submission of a draft PR marks an important 
step in the development process, inviting feedback 
from the project maintainers and the broader 
community. This feedback will be instrumental in 
refining the implementation and ensuring it aligns 
with the project's goals and standards. The 
collaborative nature of this process underscores the 
commitment to delivering a high-quality, user-
friendly solution. 

Future Work 

https://github.com/microsoft/semantic-kernel/pull/2385


The work on transforming data and generating 
plots is set to continue, with the potential to 
introduce even more sophisticated data analysis 
capabilities. The integration of these features will 

not only enhance the functionality of the Semantic 
Kernel but also empower users to perform complex 
data-driven tasks efficiently. 

 


