
From Theory to Practice: Resolving ArcGIS Integration in 
Deck.gl 
Jared Scarr 

 

Abstract 

This study documents the involvement of a team 
of university students in a collaborative program 
between CodeDay and a university. The team, 
comprised of three members and guided by a 
mentor, embarked on a journey to contribute to 
an open-source project hosted on GitHub. 
Despite possessing approximately three years of 
experience in software development, the team 
members had not previously engaged in open-
source contributions. This paper aims to 
elucidate the critical insights and takeaways 
from this experience, offering guidance and 
potential strategies for other first-time 
contributors to open-source projects. 

 

Introduction 

Deck.gl is a powerful library designed for the 
visualization of extensive geospatial datasets and 
maps utilizing WebGL technology. The typical 
users of this framework are individuals or teams, 
often occupying roles as developers or data 
scientists. For a comprehensive selection of 
example reports and applications, refer to the 
Deck.gl showcase. 

Deck.gl uses the following terms: 

• Layer: A fundamental component of 
Deck.gl that can be superimposed on a 
map or other layers to enhance data 
visualization. 

• Texture: An image within the GPU that 
corresponds to actual images, colors, 
etc., used for rendering purposes. 

• Frame Buffer Object (FBO): An 
OpenGL extension that facilitates the 
rendering of a texture. 

• Binding: The process of connecting a 
texture to the renderer, enabling the 
rendering process. 

An example of Deck.gl is presented in Figure 1. 
The ArcGIS base map is presented with two 
additional layers superimposed. The first layer 
consists of geo-JSON data, representing the 
locations of various airports, which are 
highlighted using magenta circles. The second 
layer comprises arced lines that visually connect 
the airports, illustrating their interconnections. 

 
Figure 1: ArcGis base map is displayed with two layers. 

 

Figure 2 illustrates a basic diagram of the 
operational workflow. Deck.gl offers a pure 
JavaScript API and also supports integration 
with React. Initially, a base map is selected. 
Subsequently, one of the core features, the Deck 
component, is instantiated and assigned layers. 
These layers are rendered on the screen, 
superimposed over the base map. 

 



 
Figure 2 

The focus of this case study was to address the 
broken ArcGIS integration, which prevented 
developers from rendering DeckGL data on top 
of the ArcGIS map. Despite the documentation 
appearing accurate, the library itself was 
malfunctioning. The initial task was to isolate 
the specific segment of the code where the issue 
resided. Two main areas were identified as 
crucial: the example application provided for 
guidance and the ArcGIS module. 

 

Methodology and Solution 

The initial strategy involved identifying error 
messages in the console, decomposing them into 
sub-problems, and searching for similar 
examples within the existing codebase to use as 
references. However, it was soon discovered that 
none of the error messages provided immediate 
insights. Additionally, a portion of the code was 
inaccessible, operating as a closed-box, which 
posed a significant challenge for debugging. 
Consequently, the initial strategy proved 
ineffective, raising the question of how to debug 
a system that could not be stepped through 
directly. 

When commencing this project, the team lacked 
experience with shaders, graphics, or GPU-
related development. Fortunately, their mentor 
possessed substantial expertise in these areas and 
provided invaluable assistance, including an 
article explaining a shader, which proved to be 
highly beneficial. 

The team was accustomed to a development 
environment where all code was visible and 
could be stepped through using a debugger. In 
contrast, this system presented opaque sections, 
necessitating a different approach. Diagrams 
were drawn, and assumptions were formulated 
regarding the system's functionality. The team 
then implemented code to validate or refute 
these assumptions. Each change was made 
incrementally, followed by a page reload to 
document the outcomes. Whenever they 
encountered obstacles, they sought guidance 
from the project maintainers, the Slack 
community, and their mentor. 

To identify the code sections requiring updates, 
the team traced each method call and pinpointed 
the specific code segments responsible for 
rendering to the screen. 

The final solution involved creating a pipeline of 
components that could be isolated to diagnose 
issues effectively. This systematic approach 
enabled the team to identify and address the 
broken ArcGIS integration, ultimately restoring 
the ability to render DeckGL data on top of the 
ArcGIS map. 

 

Figure 3 

In the intended process (Figure 3), ArcGIS 
should render directly to the screen while 
DeckGL renders to a texture, which is then 
displayed on the screen. The investigation began 
with the shader itself. The initial step involved 
removing both the render and the texture Frame 
Buffer Object (FBO) to determine if a gradient 
could be drawn directly on the screen (Figure 4). 
The failure of this attempt confirmed that the 
issue resided within the shader. 



 
Figure 4 

Through a process of trial and error, it was 
determined that the geometry of the shader 
required an update. Once this adjustment was 
made, the gradient successfully rendered, 
confirming that the shader was capable of 
drawing to the screen. This validation step was 
crucial in diagnosing and resolving the 
underlying issue within the shader. (Figure 5) 

 
Figure 5 

 

The subsequent logical step was to examine the 
communication between the Deck instance at the 
pipeline's other end and the shader. To do this, 
both the FBO and DeckGL render were removed 
and substituted with a hard-coded image to 
determine if it would render (Figure 6). 

If the image rendered successfully, this would 
indicate that the shader was functioning 
correctly. Conversely, if the image did not 
render, it would suggest that the shader was still 
defective, and the DeckGL render might also be 
problematic. The image did render successfully 
(Figure 7), confirming that the shader was 
operating correctly. 

 
Figure 6 

 

 
Figure 7 

 

This verification confirmed that the shader could 
render correctly when supplied with a properly 
formed and bound image texture. The next step 
was to examine the DeckGL render. It was 
identified that the binding of the texture to the 
DeckGL instance required updating with newly 
required attributes. Upon discovering and 
implementing these necessary updates, the 
DeckGL instance successfully rendered to the 
shader (see Figure 8). 

 
Figure 8 

 

The final component to address was the frame 
buffer object (FBO). It was necessary to 
reconstruct the FBO and the texture with the 



correct parameters and ensure the texture was 
properly bound. Once the correct combination of 
attributes was identified, the map with the proper 
layers rendered successfully, and the sample 
image was removed (see Figure 1). This 
functionality was verified by adding a video in 
the discussion, demonstrating the example 
working in the browser. The maintainers 
accepted the pull request, marking the team's 
first successful open-source contribution. 

Conclusion 

One of the less obvious but crucial lessons 
learned from this experience was the importance 
of meticulously tracking progress and 
knowledge gained. With the numerous rabbit 
holes, code changes, side-quests, and validated 
or invalidated assumptions encountered along 
the way, it is easy to lose track of weekly 
activities. Maintaining detailed documentation 
proved invaluable, particularly for writing 
comprehensive articles or quality pull requests 
that explain the changes and their necessity. 

Participation in this program was a highly 
rewarding experience, offering substantial 
learning opportunities both from the process and 
from the mentor. While not everyone may have 
access to such guidance, it is encouraged to seek 
out open-source projects for potential 
contributions. Look for issues labeled “good first 
issue,” join their Slack or similar communities, 
and thoroughly read their contribution 
guidelines. 

 


